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INFERENCE-ASSISTED CHOOSING BY 
ADVANTAGES 

John Haymaker1, Duen Horng Chau2 and Bo Xie3 

ABSTRACT 

This paper presents an approach to leverage decision models and machine learning to 
assist designers facing a decision challenge to automatically recall relevant 
information from prior decisions. We specify a graph-based collaborative decision-
making model based on the Choosing by Advantages (CBA) methodology that 
unifies elements of rationale involved in the decision making process (e.g., team 
members, objectives, alternatives, attributes, advantages, importance) and the 
relationships among them in a format suitable for machine inference methods. We 
adapt the Belief Propagation (BP) graph-based inference method to analyze existing 
corpus of decision rationale to inform collaborative decision-making. We illustrate 
the CBA-BP algorithm with an explanatory example, describe initial implementation, 
and outline future work in populating databases of decision models, implementing the 
algorithm and associated user interfaces, and validating the efficiency and 
effectiveness of the algorithm and interfaces through user-centered testing.  
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INTRODUCTION 

Formal decision process models are beginning to change the way building 
professionals make decisions.  For example, industry and researchers are actively 
investigating the Design Quality Indicator (Whyte and McGann, 2002), Multi 
Attribute Collective Design Assessment, and Decision Integration (Haymaker et al 
2010), SPeAR (McGregor & Roberts, 2003), and Wecision (Abraham et al, 2013) to 
help design teams gather, structure, and communicate rationale. Lean Construction 
has embraced the Choosing by Advantage system (Macomber et al, 2006), as a 
preferred way to formalize the decision process and eliminate waste in this critical 
step of delivering customer value (Koskela et al, 2002). 

However, currently decision process models rely almost entirely on human input 
to construct and organize the rationale needed to model each decision. The difficulty 
users encounter when entering well-structured rationale, and the as yet not validated 
benefit of doing so, means these systems are rarely implemented in practice (Conklin 
and Yakemovic 1991; Moran and Carroll 1996; Ishino and Jin 2002).  Decision 
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makers need methodologies and tools that make them both more effective, and more 
efficient (Senescu et al, 2013). 

Semi-automated rationale construction methods present a potentially significant 
opportunity to support designers in making better decisions more quickly, accurately, 
and with greater confidence. This paper presents an approach that leverages decision 
models and machine learning to help designers with a decision challenge to draw on 
rationale of their own and others’ past decisions. Our contributions include a graph-
based collaborative decision-making model, and machine learning to work on this 
model.  We develop a unifying model to capture pieces of information involved in the 
Choosing by Advantages decision-making processes (e.g., team members, objectives, 
alternatives, analyses) and the relationships among them. We explore how to adapt 
machine learning, specifically a graph-based inference method called Belief 
Propagation, to analyze existing corpus of decision rationale to inform collaborative 
decision-making. We present an explanatory example, describe initial and planned 
implementations, and discuss methods to measure their impact on decision-making 
efficiency and effectiveness. We target important challenges related to buildings, 
although the methods are likely more general. 

DECISION PROCESS MODELS 

Many decision models are possible; each with strengths and weaknesses depending 
on the challenge (Hazelrigg, 1999). Figure 1A illustrates many of the types of 
information and relationships that a decision maker might consider in a decision. An 
analysis of these methods is beyond the scope of this paper. Choosing by Advantages 
(Suhr, 1999) is a methodology that has gained popularity in the Lean Construction 
community (Macomber et al, 2003). CBA is a methodology containing many 
methods for making decisions of increasing complexity. In the CBA tabular method 
for decisions not involving money, a decision maker makes a decision by defining the 
alternatives, the criteria, the attributes of each alternative for each criteria, computing 
the advantages of alternatives, and then weighing the importance of advantages. The 
alternative with the most cumulative importance is the preferred alternative. This 
paper explores the potential of inference support for decision-making specifically in 
the context of the tabular method of CBA for decisions not involving money (Suhr, 
2008.).  
 

 

Figure 1A: A generic decision model illustrating many of the elements of rationale 
and relations relevant to a decision. B. The CBA Process addressed in this paper. 
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OPPORTUNITIES FOR INFERENCE ON CHOOSING BY ADVANTAGES 
DECISION MODEL 

Figure 1 illustrates that decision models require the construction and relating of a 
great deal of rationale. Users of a decision rationale system could use support in many 
ways, including naming the decision, identifying appropriate stakeholders, designers, 
gatekeepers, and decision makers to include, in choosing and correctly defining the 
project objectives, in assigning priorities amongst these objectives, in generating 
alternatives and their attributes, in determining the advantages, and in assessing the 
importance of these advantages. 

There are also different levels of complexity in the decisions AEC teams face. On 
one end of the spectrum are relatively simple decisions with few, well-defined goals, 
alternatives and performance impacts. For simpler decisions today’s commercially 
available search and recommendation systems may be applicable. However, designers 
often face more complicated challenges, with a greater number of sometimes more 
qualitative goals, very large and continuous spaces of alternatives, complex and 
uncertain analyses, and conflicting priorities among stakeholders. This research 
investigates the applicability of Belief Propagation methods on these different levels 
of decision complexity.  

SCENARIO: WORKFLOW LEVERAGING MACHINE INFERENCE 

We illustrate our envisioned workflow using the following scenario, where our 
system guides a decision maker, a student named Wendy, to quickly identify a small 
set of favorable alternatives that are likely to maximize satisfaction of her goal 
preferences, and eventually choose the best alternative. We will give the formal 
problem definition in the next section when we describe our methodology. Here, we 
use an example of choosing a trade subcontractor to explain how a decision maker 
and the system might interact, and illustrate some of the challenges and opportunities 
for integrating CBA and BP. 

Step 1: Wendy needs to choose a subcontractor to erect steel on her project. In the 
beginning, she specifies several goals that she is aware of: the time it takes to 
fabricate an order, their ability to prefabricate large sections, and their flexibility to 
deal with unusual design conditions. She believes there may be more goals, but she 
decides to start with these and let the system help her refine these goals, and identify 
other relevant ones later.  

Step 2: The system then (i) searches through its database of prior decisions to 
retrieve those that have similar decision names, e.g., containing or similar to the terms 
“steel” and “contractor”; (ii) and extract their alternatives that concern Wendy’s goals.  

Step 3: Our proposed machine inference approach, described in the next section, 
can infer which alternatives may best meet her needs. At the high level, the algorithm 
computes a “goodness” score for each alternative. Goodness is based on how strongly 
each alternative is associated with Wendy’s goals. The three goals are the “sources of 
goodness”, which diffuse to their neighbors, and those neighbors’ neighbors 
iteratively. 
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Figure 2: In step one, the user defines and potentially weights goals. In step two, the 
system orders alternatives with respect to their performance on these goals. In step 

three, the system suggests the highest performing alternatives to the user. 

One approach to determine the strength of association between a goal and an 
alternative is based on the alternative’s advantage value. The algorithm can map such 
value into a number that governs how much “goodness” would spread through that 
edge. For example, consider the goal “Prefabrication Ability”, one way is to 
normalize the five alternatives’ advantage values, as shown in the table, to the (0, 1) 
range. This means that goodness from “Fabrication Time” would be spread to the five 
alternatives in these proportions. 

In short, the algorithm determines each alternative’s overall goodness, by 
aggregating the incoming goodness that it receives from the specified goals through 
multiple paths; the higher the aggregate goodness score, the better the alternative. 

A major attractive aspect of our proposed graph-based inference approach is that 
it can handle user feedback. In the previous steps, Wendy’s goal preferences and the 
desirability of alternatives’ attributes can be easily mapped to edge weights in the 
graphical model to effect inference.  

Our approach can also handle the deletion of alternatives. For example, Wendy 
realizes that the alternative “Firm A” is not feasible (Figure 3), due to unstated 
constraints. She deleted that alternative, which corresponds to removing its node, and 
its adjacent edges, from our graphical model. The inference re-runs to compute the 
goodness scores of the remaining two alternatives, which now have very close 
goodness scores. Which one is better? 

Step 4: Our system helps Wendy by recommending other goals (for example, 
“BIM Capability”) that other users have considered for these alternatives, but not yet 
considered by Wendy. Again, our system finds and ranks these potential goals in the 
database using the same method it uses for alternatives, as discussed in the previous 
steps. Wendy realizes that this “BIM Capabilities” goal is an important consideration. 
She accepts the recommendation and updates her weights on these four goals. Steps 5 
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and 6 repeat steps two and three to reorder and help the user select more alternatives, 
in this case “Firm D” which scores relatively well on fabrication time, prefabrication 
ability,  and design flexibility, while also having good BIM capability.  

 

Figure 3: In step four the system suggests new goals. In step five, the system reorders 
alternatives. 

 

Figure 4: In step six, the system suggests new alternatives that map to the users 
revised, potentially reprioritized goals. 

METHODOLOGY: FINDING RELEVANT ALTERNATIVES AND GOALS 
VIA GRAPH-BASED INFERENCE 

The scenario above illustrates how we envision human and machine work together to 
locate good alternatives and identify relevant goals. Here we describe our proposed 
methodology in adapting the Belief Propagation machine learning method to help 
provide such inference support.  We first give the problem definition, then we briefly 
describe the algorithm. Finally, we show a numerical example that demonstrates the 
results of applying the algorithm on a dataset from Wecision Enterprise developed in 
the scenarios described in Figures 2 - 4. 

Problem Description. We can view the task of finding relevant alternatives as 
computing a goodness score (and its complementary badness score) for every 
alternative, given some goals that we are interested in (as in the scenario above). 
More technically, the problem is defined as: 
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Given: a undirected tri-partite graph of stakeholders, goals and alternatives (as 
shown in Figure 2), each viewed as a random variable ܺ ∈ ൛ݔ௚,  ,௕ൟݔ
where ݔ௚ and ݔ௕ are the good and bad label respectively; 

Goal: find the goodness for each alternative ݅ , which equals the marginal 
probability of ݅ being good, i.e., ܲ൫ ௜ܺ ൌ  ௚൯. An alternative’s goodnessݔ
and badness score sum to 1. 

Computing the goodness for all alternatives is an NP-hard inference task (Yedidia et 
al, 2003). In practice, the Belief Propagation algorithm (BP) (Yedidia et al, 2003) is 
often used to approximately solve it and has been proven successful in many domains 
(e.g., malware detection (Chau et al, 2011), fraud detection (Pandit et al, 2007)). We 
adapt the algorithm here for decision making in building and construction. To the best 
of our knowledge, this has not been done before. We believe the algorithm has strong 
potential in supporting the decision making process, due to its scalability (time 
complexity linear to the number of edges in the graph), and its flexibility in 
incorporating user feedback as we illustrate in the above scenario (e.g., adding or 
removing alternatives or goals). 

Algorithm Description. At the high level, the algorithm infers the label of a node 
from some prior knowledge about the node, and from the node’s neighbors. This is 
done through iterative message passing between all pairs of nodes ݒ௜  and ݒ௝ . Let 
݉௜௝൫ݔ௝൯	denote the message sent from ݅ to ݆. Intuitively, this message represents ݅’s 
opinion about ݆ likelihood of being in class ݔ௝. The prior knowledge about a node ݅, 
or the prior probabilities of the node being in each possible class are expressed 
through the node potential function ߶ሺݔ௜ሻ. In our scenario, the random variables 
representing the three initial goals (“Fabrication time”, “Prefabrication Ability”, 
“Design Flexibility”) have high prior values 4  which intuitively indicate high 
relevance or goodness (these goals are naturally relevant, since they were specified by 
the user. All other variables (nodes) have an unbiased prior (0.5). 

At the end of the procedure, each alternative’s goodness is determined. This 
goodness is an estimated marginal probability, and is also called belief, or formally 
ܾ௜ሺݔ௜ሻ	 (ൎ ܲሺݔ௜ሻ), which we can threshold into one of the binary classes. For example, 
using a threshold of 0.5, if the alternative belief falls below 0.5, the alternative is 
considered bad. 

In details, messages are obtained as follows. Each edge ݁௜௝  is associated with 
messages ݉௜௝൫ݔ௝൯	and ௝݉௜ሺݔ௜ሻ for each possible class. Each message vector ݉௜௝  is 
normalized over ݆, so that it sums to one. Normalization also prevents numerical 
underflow. Each outgoing message from a node ݅ to a neighbor ݆ is generated based 
on the incoming messages from the node’s other neighbors. Mathematically, the 
message-update equation is: 

 

                                                           
4 Nodes’ prior values are often assigned by the user; they are the user’s subjective belief of whether the 

nodes are relevant, before any computation or inference is performed. For example, a prior value 
close to 1 means the user strongly believes that node is relevant. 
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where ܰሺ݅ሻ is the set of nodes neighboring node ݅, and ߰௜௝൫ݔ௜,  ௝൯ is called the edgeݔ
potential; intuitively, it is a function that transforms a node’s incoming messages into 
the node’s outgoing ones. Formally, ߰௜௝൫ݔ௜,  ݅ ௝൯ equals the probability of a nodeݔ
being in class ݔ௜ given that its neighbor ݆ is in class ݔ௝. In our case, since each edge 
has a weight (e.g., goal weight), this probability is scaled by that weight value.  

The algorithm stops when the beliefs converge (within some threshold; 10ହ  is 
commonly used), or a maximum number of iterations has finished. The node beliefs 
are then determined as follows, where ݇ is a normalizing constant: 

Numerical Example. Here, we discuss initial efforts to apply and test the algorithm. 
Our method requires a collection of similar and appropriately structured decisions in a 
database, and there are currently a very limited number of decision types for which 
we have collected a large enough set of CBA models. We introduce here a scenario 
based on dataset from Wecision Enterprise developed in a class taught by the first 
author in which students were asked to construct their own decision models about 
how to mass a new addition onto a campus building. This gave us a collection of 
several models that attempt to answer a similar question with which to begin to 
explore the feasibility of the algorithm. As this was student work, we needed to adjust 
some models to improve their semantic and syntactic quality. We implemented the 
Belief Propagation algorithm in Java 1.6. 

 

Figure 5. Example results from applying Belief Propagation on a class dataset. (a) 
Computes goodness scores for all alternatives and returns top ones as 

recommendations. (b) We get goal commendations “for free” since goodness scores 
are computed for all goals and alternatives every time the algorithm is run. 

In this new scenario Wendy specified three goals (“Architecture”, “Space”, and 
“Energy”), and she wanted to find alternatives that maximize her goal preferences. 
The algorithm helps by computing the goodness for all alternatives available in the 
decision database, as shown in Figure 5a (similar to Figure 2, but annotated with 
algorithm inputs and outputs). The algorithm first sets the three goals’ prior values to 
1 (to indicate “high relevance”), and all other goals’ to 0.5 (indicate “unknown 
relevance”), then uses the two equations described above to compute every 
alternative’s goodness score. The three alternatives “3rd Floor Addition”, “Front 
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Addition”, and “East Addition” have the highest scores and are thus recommended to 
Wendy.  

Later in this scenario (similar to Figure 3), Wendy wants the system to help 
identify more relevant goals. This means we are now interested in goals’ goodness 
scores, instead of alternatives’ scores. Since the algorithm always computes the 
goodness scores for all noes in the graph (i.e., all alternatives and all goals), we 
merely need to rank the goals by their scores to locate the next relevant goal (in this 
example: “Worker Productivity”, as show in Figure 5b). 

NEXT STEPS: EXTENDING AND VALIDATING THE MODEL 

Our next step is to deploy our method and study how it may help decision makers in 
real-world tasks and decisions. We plan to conduct longitudinal studies to shadow 
decision makers during the course of projects that they work on, to obtain both 
quantitative and qualitative data and evidence, to help us better understand what kind 
of tasks our method may help with, to what extent; whether it is intuitive to use; are 
there drawbacks, etc. In the sections above, we focused on scenarios where we help 
the user find relevant alternatives and goals. However, we believe our method can 
extend to support locating other entity types as well, such as to find team members for 
a decision team. Below we describe our hypotheses and metrics for such evaluation to 
measure success. We envision conducting comparative studies where users will be 
divided into three groups (conditions), who will use different tools: 

 Condition C: Conventional tools, such as spreadsheet 

 Condition W: Wecision without Belief Propagation inference support 

 Condition WB: Wecision with Belief Propagation inference  

Our high-level hypothesis is that by leveraging a repository of past decision processes, 
we may help current decision makers make better decision.  Table 1 describes metrics 
by which to measure improvements (i.e., what “better” means), and the more detailed, 
lower-level hypothesis that we have in mind (“>” means greater, faster, more, etc.): 

Table 1. Planned validation scheme for CBA-BP 

Hypothesis 
Expected results Quantitative or qualitative measure? 

Time to complete whole decision process C > W > WB Quantitative 
Time to find desired number of goals C > W > WB Quantitative 
Number of goals found WB > W > C Quantitative 
Quality of goals defined (e.g., more details 
such as defining measurement units, using 
more words, pictures, URLs) 

WB> W > C Qualitative (may seek domain experts to 
help evaluate participants’ data) 

Time to find desired number of alternatives C > W > WB Quantitative 
Number of alternatives found WB > W > C Quantitative 
Quality of alternatives defined (e.g., more 
details such using more words, pictures, 
URLs, better advantages) 

WB > W > C Qualitative (may not need to rely on 
domain experts since main evaluation is 
performed in analysis step) 

Time to assemble desired number of team 
members 

C > W > WB Quantitative 

Qualification of team members found WB > W > C Qualitative (if decision makers can find 
the right team members, the team will be 
more collaborative and be able to produce 
better work) 
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CONCLUSION AND NEXT STEPS 

We present a new approach leveraging decision models and machine learning to help 
guide users to leverage past decision rationale to support current decision-making. 
We describe the model of decisions necessary to support machine inference and the 
algorithm used to mine these decisions. We illustrate the use of this algorithm on a 
building massing decision scenario to explain how the algorithm works in the context 
of a decision. We adapted the Belief Propagation machine learning method, not to our 
knowledge applied to decision models, and demonstrated a large potential for 
providing assistance to decision makers. 

Our next steps are to extend and integrate our prototype, to improve the corpus of 
decisions modeled therein, and to validate the impact that machine-learning assisted 
decision tools can have on decision methods. We will extend and integrate our 
prototype into the Wecision decision-making platform (DPI, 2013). Many types of 
algorithms, and approaches to providing support are possible. For example, one 
problem with any search algorithm is consistent and well structured information -  
one decision maker might call a goal “energy efficiency” while another might refer to 
a similar goal as “energy savings”.  This problem could be addressed through 
requiring that more structured decision rationale be built by professionals, or by 
employing similarity algorithms that provide an additional layer of belief about the 
similarity of two text strings. Additional research is needed to determine the relative 
costs and benefits of different approaches. As long as the value of structuring decision 
rationale does not outweigh the immediate cost of recording the rationale, designers 
will not take the time to build good decisions. 

We wish therefore to systematically test the ways that inference methods such as 
Belief Propagation can help improve the efficiency and effectiveness if decision 
making. Our hypothesis is that different types of data mining approaches could help 
designers decide what to call their decisions; the constraints they should define, goals 
they should consider, which goals should be most important, the team members they 
might include, the alternatives they could consider, the likely performance of these 
alternatives, and the ways different stakeholders are likely to react to potential 
outcomes of decisions. Different data mining algorithms will enable different types of 
decision makers to perform more or less effectively on different types of decision 
challenges. We propose a sophisticated evaluation methodology is needed to 
determine which methods provide the best guidance to which types of decision 
makers, on which types of challenges. These studies will consist of between-subject 
or within-subject user studies in which students and professional users will be asked 
to make decisions with and without various machine-learning algorithms. Decision 
efficiency will be evaluated in terms of the time and resources required to arrive at a 
decision, while effectiveness will measure issues related to the time required to 
complete the task, the number of people it involved, the number and range of 
alternatives explored, the certainty of the analyses performed, the value of the 
alternative selected and the satisfaction of the decision makers and stakeholders 
involved in the decision.  
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